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In 1985, an iconclastic computer architect, W. Daniel Hillis,
won the Association of Computing Machinery’s Doctoral Dissertation
Award for his work on the Connection Machine.1 No stranger to 1 W. Daniel Hillis. The Connection

Machine. PhD thesis, Massachusetts
Institute of Technology, 1985

controversy, he entitled his concluding chapter,

“New computer architectures and their relationship to physics, or,
why computer science is no good.”

Hillis’s critique was that parallel algorithm design at the time was too
abstract, ignoring fundamental physical limitations of real machines.
Left unchecked, there would be two unfortunate consequences. First,
algorithms would tend to perform poorly on real machines. Sec-
ondly, architects would never learn how to build better machines,
having no real insight into what algorithms needed.

Arguably, these consequences persist. On “cooperative design” of
exascale systems, it is largely computer scientists, and not the applied
mathematicians responsible for shepherding (parallel) algorithms,
who run the show. Perhaps it is better this way. Or, perhaps it is time
for applied mathematicians to lead. Indeed, that is our position, and
we say so speaking primarily as computer scientists.

Considering Hillis’s critique, exascale hardware analysis sug-
gests we try to account for the energy and power of a computation.2 2 Peter Kogge et al. Exascale Com-

puting Study: Technology chal-
lenges in acheiving exascale sys-
tems, September 2008. URL http:

//users.ece.gatech.edu/mrichard/

ExascaleComputingStudyReports/

exascale_final_report_100208.pdf

Indeed, we are studying how to do so.3 Our starting point is simple:

3 Jee Choi, Dan Bedard, Rob Fowler, and
Richard Vuduc. A roofline model of
energy. In Proc. IEEE Int’l. Parallel and
Distributed Processing Symp. (IPDPS),
Boston, MA, USA, May 2013. http://

vuduc.org/pubs/choi2013-archline-ipdps.

pdf

just as flops and communication have costs in time, we may ascribe
to them costs in energy.4 We seek models parsimonious enough to

4 By proxy, we can then reason about
the average power of a computation
through Power = Energy × Time.

use, but rich enough to make “useful” predictions.
Suppose we wish to know whether overall time, energy, and

power to compute would be better if the system building block is
a high-end desktop GPU or a low-end low-power mobile GPU. The
NVIDIA GTX Titan can achieve 5 TFLOP/s peak in single-precision
within 250 Watts thermal design power (TDP) envelope. The GPU of
a mobile Arndale system, based on the Samsung Exynos 5 system-
on-chip (SoC) processor, delivers 72 GFLOP/s at 10 Watts TDP. The
Titan achieves 20 GFLOP/s per Watt vs. 7.2 for the Arndale, yet,
there are active efforts to build supercomputers from the latter.5 5 The Mont Blanc Project, for instance:

http://www.montblanc-project.eu/Which is “correct?”
Of course, “it depends”—but the right algorithm analysis may

offer a more precise and pointed answer. Figure 1 shows one such
analysis. “Algorithms” appear abstractly by their intrinsic computa-
tional intensity (FLOP : Byte), along the x-axis. The y-axes compare
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Hypothetical scaled Arndale GPU design vs. GTX Titan Figure 1: Comparison of the time-
efficiency (performance), energy-
efficiency, and power required by
a mobile GPU (from an “Arndale”
Samsung Exynos 5 developer board)
versus high-end gaming-grade desktop
GPU (NVIDIA GTX Titan), over a range
of synthetic computations with varying
computational intensities (FLOP:Byte).
Our analysis suggests that combining
70 of the mobile GPUs can, relative
to the desktop GPU, outperform in
time, match in energy, at only a small
(2×) increase in power when the
computation is sufficiently memory
bound. Otherwise, the desktop GPU is
a better building block.

time-efficiency (flops per unit time), energy-efficiency (flops per unit
energy), and power (energy per unit time) of the two platforms. The
dots are microbenchmark measurements and the dashed lines our
model’s prediction—limited, but with a good correspondence.

Most interesingly, this analysis reveals that the platforms match in
energy-efficiency for intensities as high as 4 FLOP:Byte;6 at higher 6 A sparse matrix-vector multiply is

roughly 0.25–0.5 FLOP:Byte in single-
precision and a fast Fourier transform
2–4 FLOP:Byte.

intensities, the weaker Arndale is within 2× the GTX Titan in energy-
efficiency despite having 1/70th the peak performance. The dashed
brown line is a hypothetical prediction, based on the model, of 70

Arndales stitched together: it could match the GTX Titan on peak for
compute-bound codes while delivering up to 3–4× Titan’s perfor-
mance for memory bandwidth-bound codes. The price is a doubling
of power, as well as interconnect costs, which this analysis ignores.
Nevertheless, it quantifies the potential and at the very least suggests
a precise and analytical way to compare these as building blocks,
with algorithmic properties—like intensity—driving the analysis.

The goal of co-design should be to say, in broad but also quanti-
tative terms, how macroscopic changes to an architecture might affect
the execution time, scalability, accuracy, and power-efficiency of a
computation; and, conversely, identify what classes of computation
might best match a given architecture. The preceding demonstra-
tion maintains the algorithm abstractly. But many trade-off analyses
become possible with the right model of cost. We have shown else-
where, for instance, the notion of algorithmic power scaling: given
different classes of algorithms, which scale better when more power
is injected into the system?7 It is respect to these high-level ques- 7 Kenneth Czechowski and Richard

Vuduc. A theoretical framework for
algorithm-architecture co-design. In
Proc. IEEE Int’l. Parallel and Distributed
Processing Symp. (IPDPS), Boston, MA,
USA, May 2013. http://vuduc.org/pubs/

czechowski2013-codesign-ipdps.pdf

tions that we believe applied mathematicians, who actively engage in
parallel algorithm design, might offer the most interesting answers.

http://vuduc.org/pubs/czechowski2013-codesign-ipdps.pdf
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